If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+65
We move all terms to the left:
0-(-16t^2+65)=0
We add all the numbers together, and all the variables
-(-16t^2+65)=0
We get rid of parentheses
16t^2-65=0
a = 16; b = 0; c = -65;
Δ = b2-4ac
Δ = 02-4·16·(-65)
Δ = 4160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4160}=\sqrt{64*65}=\sqrt{64}*\sqrt{65}=8\sqrt{65}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{65}}{2*16}=\frac{0-8\sqrt{65}}{32} =-\frac{8\sqrt{65}}{32} =-\frac{\sqrt{65}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{65}}{2*16}=\frac{0+8\sqrt{65}}{32} =\frac{8\sqrt{65}}{32} =\frac{\sqrt{65}}{4} $
| 0.8x+4=16 | | 4^x=126 | | 0=50t^2+100t-130 | | 0.1x=600 | | -3(n-1.2)=4(n+1.6) | | 78y=100 | | 5(x−3)=5 | | 2(r+4)=(r+-7) | | r÷15=0 | | c/0.46=5.2 | | x/23=32 | | 7k+1+3k+5=2(4k+3) | | 11x+11=7x+16x | | 15*y=135 | | -45=21+t | | 3a+4a+10=17a | | T=5n-4 | | Y=225x+28,000 | | r+163=670 | | 43=g−22 | | x2+8x−20=0 | | -40/f=-5 | | 2y-11=-1 | | x+17=914 | | (5x+30)=1 | | x-22=94 | | x+14=187 | | -5=(4+3i) | | x^2=22.75 | | 11a=-a | | t2+16t=2t+32 | | x-9=30* |